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Abstract

Background and objectives: Hridayarnava Rasa is traditionally used cardio tonic in Ayurveda. This drug was se-
lected for the evaluation of stabilization of erythrocyte membrane (EM) in high-fat diet induced atherosclerosis 
via rabbit model.

Methods: A total of 24 male white New Zealand rabbits were randomly divided into 6 groups (n = 4 each). Rabbits 
in group I were fed a standard pellet diet, those in group II rabbits a high-fat diet (HFD), those in groups III, IV and 
V increasing doses of H. Rasa and an HFD, and those in group VI an HFD diet plus Atorvastatin.

Results: There was a significant reduction in rabbit sodium/potassium adenosine triphosphatase (Na+/K+ ATPase) 
at 30 (58.51%), 60 (61.40%), and 90 (64.92%) days of an HFD diet compared to the control group. Upon treatment 
with H. Rasa, the activity of Na+/K+ ATPase in groups III, IV, and V increased at 30, 60 and 90 days, respectively, 
compared to HFD induced rabbits. The Na+ concentration also increased significantly in HFD-administered rabbits 
at 30, 60 and 90 days as compared to controls. Serum K+ concentration was reduced at days 30, 60 and 90 in the 
HFD group and was increased in group V as compared to the control group. These levels improved with H. Rasa 
treatment whereas the atorvastatin-treated group exhibited an improvement only between dose levels 2 and 3.

Conclusions: These results suggest that HFD diminishes EM stabilization in atherosclerosis whereas H. Rasa pro-
tects EM by maintaining the Na+/K+ ATPase activity through a Na+/K+ pump. In atherosclerosis, an HFD reduces EM sta-

bilization after administration of H. Rasa, which main-
tains Na+/K+ ATPase activity through a Na+/K+ pump.
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Introduction

Sodium/potassium adenosine triphosphatase (Na+/K+ ATPase) is 
expressed in almost all cells of higher organisms. This protein is 
heterodimeric and trans-membranal, and regulates ion homeostasis, 
substrate transport, neuronal signaling and muscle contraction.1 In 
addition to its inotropic effects, it acts as a signal transducer, which 
controls many cellular events.2 The P-type Na+/K+ ATPase is com-
posed of an active α-unit containing 10 trans-membrane segments 
(i.e. αM1-αM10), a sugar-rich auxiliary β-unit and a hydrophobic 
single membrane crossing protein γ-unit that regulates the entire 
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ionic gradient cell membrane.3
The primary catalytic unit present in various tissues has sev-

eral isoforms of binding units: α1 is present in nerves kidney and 
lung, α2 in heart and skeletal muscle, α3 in brain and α4 in the 
testis (especially in spermatozoa).4 The Na+/K+ ATPase in human 
erythrocytes is composed of the α1, α3, β1 and β3 isoforms,5 and 
regulates numerous erythrocyte functions. The physical and bio-
chemical properties of membranes are strongly controlled by the 
lipid composition and redox status of the environment. Changes 
in membrane fluidity have been shown to modify the activity of 
membrane-bound receptors, enzymes and ion-exchangers.6,7 Na+/
K+ ATPase activity is controlled by the microenvironment sur-
rounding the lipid, and therefore, modifications in membrane 
fluidity have an effect on the activity of this enzyme. Membrane 
fluidity and permeability affect ion transport due to changes in 
cholesterol and lipid fractions, thereby reducing the functional ef-
ficiency of the erythrocyte. These effects cause changes in mem-
brane elasticity and thus hinder the passage of erythrocytes through 
narrow capillaries. The lateral mobility of Na+/K+ ATPase can also 
be affected, which is important for cell function.8–11 Cholesterol 
molecules were recently shown to specifically bind to three dif-
ferent sites in the enzyme, as studied by X-ray crystallography on 
Na+/K+ ATPase.12,13 The activity of Na+/K+ ATPase is controlled 
by intracellular and extracellular ATP and Na+ concentrations. The 
affinity of Na+/K+ ATPase for Na+ and K+ appears to be modu-
lated by tissue-specific factors, such as the lipid composition of 
the membrane.4,14,15 It is estimated that roughly 25% of all cyto-
plasmic ATP is hydrolyzed by Na+ pumps in resting humans. In 
nerve cells, about 70% of ATP is consumed to fuel Na+ pumps. In 
erythrocytes, intrinsic K+ has been demonstrated to behave as a 
competitive inhibitor of intrinsic Na+ binding and an activator of 
maximal pump flux. Importantly, cholesterol deficiency amplifies 
each of these K+ effects. In the absence of internal K+, the reduc-
tion of cholesterol no longer has any effect on the enzyme.16 It has 
been suggested that biochemical and biophysical abnormalities of 
cell membranes17 may actively participate in the pathogenesis of 

hypertension.18 Furthermore, such abnormalities may be involved 
not only in vascular smooth muscle cells, but also in circulating 
blood cells.19 Reduced activity of Na+/K+ ATPase in erythrocyte 
membranes (EMs) and its inverse relationship with the lipid perox-
idation product also occur in cardiac and vascular smooth muscle 
cells taken from patients with prehypertension. Increased lipoper-
oxidation has been proposed as a cause of Na+/K+ ATPase reduc-
tion in EM.18 Lipid peroxidation directly alters membrane fluidity, 
an important feature for maintaining the optimal functioning of 
erythrocytes. Membrane fluidity affects the homeostatic control of 
erythrocytes, which in turn affects the passage of oxygen, water 
and ions such as Na+, K+ and Ca2+ through the membrane. This in 
turn facilitates a balance between the intracellular and extracellu-
lar media. These changes affect the kinetic parameters of the Na+/
K+ ATPase and modify the enzyme-substrate affinity.20 Increased 
lysosomal fragility can lead to the release of proteolytic enzymes 
that have been seen in other cells.

Hridayarnava Rasa, an Ayurvedic formulation composed of 
six constituents, including Terminalia chebula Retz., Terminalia 
bellerica (Gaertn) Roxb, Embelica officinallis Gaertn (Kasayam 
Vara), Copper (Tamra), Mercury (Suta) and Sulphur (Gandhaka). 
These constituents are processed in a Solanum nigrum Linn (Svar-
asam Kakamachi Rasa) decoction. As per Ayurveda, this medicine 
is used in the treatment of cardiac disorders. H. Rasa can also be 
used to treat several diseases associated with Angina Pectoris (Hrid-
shoola).21 Tamra bhasma is an important component of H. Rasa that 
is used in the treatment of various ailments.22,23 Atherosclerosis and 
hypertension are directly related to the reduced status of Na+/K+ 
ATPase activity.24 The antihyperlipidemic and antioxidant with anti-
obesity activity of T. bhasma has also been reported.25,26 Data on the 
role of H. Rasa, Na+/K+ ATPase and ion transport in EM have yet to 
be studied. Therefore, the aim of the present study is to evaluate the 
correlation between the cholesterol-lowering agent H. Rasa on EM 
Na+/K+ ATPase activity in rabbits with high-fat diet (HFD)-induced 
atherosclerosis23 (Fig. 1). This study also investigated the dose-and 
time-dependent activity of H. Rasa.

Fig. 1. Possible mechanism of action of Hridayarnava Rasa on changes of erythrocyte membrane in experimental rabbits. Na+/K+ ATPase, sodium/potas-
sium adenosine triphosphatase. 
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Methods

Male New Zealand white rabbits were purchased from Biogen Labo-
ratory Animal Facility, Bangalore, Karnataka and adapted to labora-
tory conditions for 7 days before use. The average body weight of 
rabbits ranged from 1.9 to 2.2 kg, which were fed rabbit pellet feed 
and reverse osmosis water ad libitum. The variation in body weight of 
animals upon randomization did not exceed ±20% of the mean body 
weight. Temperature and relative humidity (RH) were maintained at 
22±2°C and 40 to 60% RH respectively. Illumination was controlled 
by a light/dark cycle of approximately 12/12 h. Each rabbit was indi-
vidually housed in its own rabbit cage. This study was approved by In-
stitutional Animal Ethics Committee (IAEC/CSMRADDI/17/2017). 
An atherogenic diet27 consisted of 1% cholesterol, 5% egg yolk, 
5% lard and 89% normal diet. H. Rasa, an Ayurvedic drug (Batch 
No. 191248; (MFG. LIC. Number: 1/25D/76; Date of Manufacture: 
03/2018 and Date of Expiry: 02/2023) was procured from Arya vaid-
ya sala, Kottakkal, Kerala, India and was kept under a temperature of 
25 ± 3°C and humidity of 52 ± 10% RH until the experiments were 
completed. An acute oral toxicity study on H. Rasa was performed 
as per the OECD 423 guideline. No remarkable toxicity was found.

Experimental design

A total of 24 rabbits were randomly divided into 6 groups of 4 
rabbits. Briefly, Group I rabbits were fed with standard pellet diet, 
Group II rabbits with HFD, Group II rabbits with HFD + H. Rasa 
(10.27 mg/kg.b.wt/p.o.) Group IV rabbits with HFD + H. Rasa 
(20.53 mg/kg.b.wt./p.o), Group V rabbits with HFD + H. Rasa 
(41.07 mg/kg.b.wt/p.o), and Group VI-rabbits with HFD + atorv-
astatin (0.513 mg/kg.b.wt/p.o). The drug and vehicle were admin-
istered daily by oral (gavage) for up to 90 days.

Isolation of erythrocyte membrane and estimation of Na+/K+ 
ATPase

At the end of 30, 60 and 90 days of the diet, blood was collected 
from the saphenous vein of rabbit under thiopental sodium anes-
thesia. Blood was collected in heparin tubes, plasma was separated, 
and red blood cell pellet was subjected to erythrocytes membrane 
isolation using a standard procedure.28 Na+/K+ ATPase was also 
estimated using a standard procedure.29,30 Briefly, two sets of test 
tubes were marked as test and the other as control and were filled 
with membrane samples. A total of 1.0 mL of Tris-HCl buffer (90 
mM, pH 7.5), 0.2 mL of MgSO4 (500 mM), NaCl (600 mM), KCl 
(50 mM), EDTA (1 mM), ATP (40 mM) were added to each tube. 
The tubes were incubated at 37°C for 15 min and the reaction was 
arrested by adding 1.0 mL of TCA (10%). A total of 0.2 mL of the 
membrane preparation was added to the control tubes. The phos-
phorus content in the supernatant was estimated by the method of 
Fiske and Subbarrow.31 Membrane proteins were then estimated,32 
with enzyme activity in the erythrocyte membrane expressed as 
µmoles of Pi liberated/hr/mg protein. Serum was used for the esti-
mation of Na+ and K+ using a semi-automated analyzer.

Histopathology

The liver, heart, aorta, kidney and spleen were harvested on the 
91st day of diet and were subjected to histopathological evaluation 
using hematoxylin and eosin staining.

Statistical analysis

Statistical analysis was performed using the Graph Pad Prism soft-
ware, version 8.4. All values are expressed as the mean ± SD (n 
= 4). A one-way analysis of variance was used to compare group 
means with Turkey’s test to correct for multiple comparisons. A 
p-value<0.05 was considered statistically significant.

Results

ATPases are membrane-bound enzymatic proteins that are sensi-
tive to changes in membrane lipid composition. An increase in the 
amount of cholesterol in plasma membranes leads to a decrease 
in the activity of ATPases. Erythrocytes are unique among mam-
malian cells and the red cell membrane has been provided with 
several receptor activities. The Na+/K+ ATPase activity at different 
time intervals of treatment in the EM of the control and drug treat-
ment groups being fed with different doses of H. Rasa is depicted 
in Figure 2. The activity of Na+/K+ ATPase was significantly re-
duced in group II-IV (p<0.0001) at 30, 60 and 90 days and group 
VI (p<0.05) at 90 days compared to group I. The activity of group 
V was significantly increased at 30 (p<0.001), 60 (p<0.0001) 
and 90 (p<0.0001) days, as was that of group VI at 30, 60 and 90 
(p<0.001) days of treatment compared to group II. The level of 
Na+/K+ ATPase was also significantly increased in group V at 30 
(p<0.05), 60 (p<0.05) and 90 (p<0.01) days of treatment compared 
to group III.

The level of Na+ in the serum of the control and drug-treated 
groups being treated with different doses of H. Rasa and at dif-
ferent time intervals of treatment is shown in Figure 3. The Na+ 
level was significantly increased in group II at 30 (p<0.05), 60 
(p<0.001) and 90 (p<0.0001) days, and in group III (p<0.01) and 
VI (p<0.001) at 90 days compared with group I. The level of Na+ 
was also significantly reduced in group III at 90 days (p<0.01), 
group IV at 60 (p<0.01) and 90 (p<0.0001) days, group V at 30 
(p<0.05), 60 (p<0.001), and 90 days (p<0.0001), and group VI 
(p<0.01) compared to group II at 90 days. There was also a sig-
nificant reduction in group V (p<0.05) at 60 of 90 days compared 
to group III.

The serum potassium level of the control and drug-treated 
groups at different doses of H. Rasa and at different time intervals 
of treatment is shown in Figure 4. The K+ level was significantly 
reduced in group II (p<0.001) at 30, 60 and 90 days, in group III 
and IV at 60 (p<0.01) and 90 (p<0.001) days, in group IV (p<0.05) 
at 30 and 60 days and in group VI (p<0.01) at 30, 60 and 90 days 
compared to group I. The K+ level was significantly increased in 
group IV at days 60 and 90 (p<0.01), in group V at 30 (p<0.01), 60 
and 90 (p<0.001) days and in group VI at 90 (p<0.05) days com-
pared with group II. There was also a significant increase in group 
V (p<0.05) at 60 of 90 days compared to group III.

Discussion

The EM consists of two domains, a lipid bilayer and a cytoskel-
eton. The lipid domain exhibits structural similarity in almost all 
mammalian cells. The erythrocyte carries oxygen and is exposed 
to a wide range of substances dissolved in blood plasma, and is 
particularly vulnerable to oxidative damage. The effect of those 
oxidative stresses depends on the compounds involved, their con-
centration, and the metabolic capabilities of the erythrocyte.33 In 
the present study, Na+/K+ ATPase was significantly reduced at 30, 
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60 and 90 days of HFD-induced rabbits. Hypercholesterolemia can 
lead to reduced denaturation of red blood cells, which impairs their 
hemorrhagic behavior and promotes atherosclerosis.34 The trans-
port of cations and anions through the membrane is regulated by a 
number of enzymes, including Na+/K+ ATPase, Ca2+ ATPase, Na+/
Ca2+ exchanger, Na+/K+/Cl− co-transporter and H+ ATPase.35–37 
Na+/K+ ATPase is an important protein that regulates the cellular 
volume of erythrocytes, which in turn protects hemolysis and has 
a major effect on the deformability of erythrocytes. These tolerate 

blood pressure and allow passage through narrow vessels and are 
thus important factors for erythrocyte viability.38

The viscosity and stiffness of EMs are elevated in hypertensive 
rats18 and in patients with essential hypertension.39 The EM flu-
idity depends on Na+/K+ ATPase activity18 and may suggest that 
early damage in cell membranes leads to further complications, 
such as decreased erythrocyte Na+/K+ ATPase activity and the 
development of hypertension. In addition, changes in antioxidant 
status and increased lipoperoxidation have also been proposed to 

Fig. 3. Status of Sodium in serum of experimental groups. Gp I-Control; Gp II-Disease Control; Gp III-Dose 1; Gp IV-Dose 2; Gp V-Dose 3; Gp VI-Standard 
drug. Values are expressed as mean ± SD of 4 rabbits; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; NS-Non significant. $Statistical analysis of one way 
ANOVA was used to compare results with group I. #Statistical analysis of one way ANOVA was used to compare results with group II. @Statistical analysis of 
one way ANOVA was used to compare results of group IV and V with group III. 

Fig. 2. Status of Na+/K+ATPases in erythrocyte membrane of experimental groups.  (Gp I-Control; Gp II-Disease Control; Gp III-Dose 1; Gp IV-Dose 2; Gp 
V-Dose 3; Gp VI-Standard drug). Values are expressed as mean ± SD of 4 rabbits; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001;NS-Non significant. $Statisti-
cal analysis of one way ANOVA was used to compare results with group I. #Statistical analysis of one way ANOVA was used to compare results with group II. 
@Statistical analysis of one way ANOVA was used to compare results of group IV and V with group III HFD, high-fat diet; Na+/K+ ATPase, sodium/potassium 
adenosine triphosphatase.
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be a reason for the reduction in Na+/K+ ATPase activity in EM.39 
The current work suggests that the drastic reduction in Na+/K+ AT-
Pase activity at 30 (2.41 fold), 60 (2.59 fold), and 90 (2.85 fold) 
days in HFD-induced rabbits may be one of the pathophysiological 
aspects associated with atherosclerotic status. Changes in intracel-
lular Na+ and K+ levels were also related to the reduced activity of 
the erythrocyte Na+/K+ ATPase.40

There was a significant reduction in Na+/K+ ATPase at days 30 
(58.51%), 60 (61.40 %), and 90 (64.92 %) in HFD-induced rabbits 
compared to the control group. Since Na+/K+ ATPase is essential 
for maintaining various cellular functions, its inhibition can result 
in a variety of pathological conditions. The association between 
cardiovascular risk factors and Na+/K+ ATPase activity in diabetes 
patients leads to cardiovascular complications. While studies have 
shown that the concentration of total Na+/K+ ATPase is 40% lower 
in heart failure patients,41 our present result showed a reduction 
of 64.92 % at 90 days after atherosclerosis induction. Decreased 
Na+/K+ ATPase activity is strongly associated with a reduction in 
lecithin cholesterol acetyl transferase.42 The ATPase of Na+/K+ in 
the EM has been shown to be inhibited by cholesterol in vitro,43 a 
concept that was related to our previous study.44 An inverse cor-
relation between EM Na+/K+ ATPase activity and polyunsaturated 
fatty acid levels has also been reported.45 Na+/K+ ATPase is an im-
portant scaffolding protein that can interact with signaling proteins 
such as protein kinase C and phosphoinositide-3-kinase.46

The Na+ concentration was increased by 21.77%; 30.47% and 
46.48% in HFD-induced rabbits at 30, 60 and 90 days of the diet, 
respectively, and may be due to the presence of Na+ in the serum 
and extracellular fluids. The concentration of Na+ is maintained 
within a narrow range by osmoregulation, and notably, serum Na+ 
is positively associated with the risk of coronary heart disease.47 
Increased extracellular Na+, even within physiological limits, is 
accompanied by vascular changes that facilitate the development 
of atherosclerosis.

Serum K+ levels were reduced in the HFD-induced group at 
30 (58.88%), 60 (56.82%) and 90 (53.75%) days compared to the 
control group, which can be attributed to the Na+/K+ pump main-

taining intracellular K+ within the cell. The concentration gradient 
of Na+ and K+ ions mainly depends on the action of membrane-
bound enzymes of the cell. Due to peroxidation of membrane li-
pids, the osmatic stability of electrolytes in the divalent metal Ca2+ 
changes. The risk factors for the shortened existence of electro-
lytes and the reduced denaturation may be closely related to the 
inhibition of membrane-bound ATPase. Aging has been shown to 
cause oxidative damage, balance the antioxidant system and stimu-
late metabolism of oxidative products. Therefore, T. chebula may 
act as a potent drug to prevent age-related degenerative diseases 
and improve general health. Atherosclerosis is an age-related dis-
order and is associated with many oxidative stress factors that are 
directly linked to the reduced ATPase activity and K+ transport that 
can cause membrane changes in red blood cells. These changes can 
be more damaging to the cell and are more attributable to hemoly-
sis than hemoglobin denaturation. Upon treatment with H. Rasa, 
Na+/K+ ATPase activity improved in group III (15.06%; 21.80%; 
34.41%), IV (24.08%; 35.13%; 48.23%) and V (46.91%; 52.24%; 
61.60%) at 30, 60 and 90 days, respectively, when compared to 
HFD-induced rabbits. Na+ concentration was reduced at 30, 60 and 
90 days of diet in group III (6.70%; 11.10%; 23.52%), IV (19.86%; 
26.81%; 39.11%) and V (28.47%; 33.93%; 45.92%) when com-
pared to the HFD-administered group. The K+ concentration grad-
ually increased in group III (5.63%; 5.24%; 4.91%), IV (24.41%; 
26.64%; 30.19%) and V (47.89%; 59.83%; 66.79%) at 30, 60 and 
90 days of diet, respectively. The administration of H. Rasa sig-
nificantly increased the activity of this enzyme, and may be due to 
the properties of T. chebula (a component of H. Rasa). T. chebula 
acts as a reducing agent, and in turn helps to maintain the mem-
brane thiol which is essential for the activity of Na+/K+ ATPase in 
the reduced state. These results suggest that T. chebula is highly 
protective against disease. The other ingredient present in H. Rasa 
is T. bellerica Roxb, which has been shown in several studies to 
have anti-hypercholesterolemia activities.48 The other vital con-
stituent of H. Rasa is E. officinalis, which is a potent anti-oxidant 
and also prevents lipoperoxidation.48 An increased lipoperoxida-
tion and poor antioxidant status are major factors for decreasing 

Fig. 4. Status of Potassium in serum of experimental groups. Gp I-Control; Gp II-Disease Control; Gp III-Dose 1; Gp IV-Dose 2; Gp V-Dose 3; Gp VI-Standard 
drug. Values are expressed as mean ± SD of 4 rabbits; *p < 0.05; **p < 0.01; ***p < 0.001; NS-Non significant. $Statistical analysis of one way ANOVA was used 
to compare results with group I. #Statistical analysis of one way ANOVA was used to compare results with group II. @Statistical analysis of one way ANOVA 
was used to compare results of group IV and V with group III 
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Fig. 5. Histopathological findings of major organs in control and high dose of H. Rasa treated groups (10 × 10X). 
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Na+/K+ ATPase activity.49 Na+/K+ ATPase activity was improved 
in the groups administered with the middle (IV) (10.62%; 17.04%; 
21.07%) and highest (V) dose (37.50%; 38.92%; 41.46%) of H. 
Rasa at 30, 60 and 90 days of diet, respectively, when compared 
to the lowest dose group (III). The Na+ concentration in the mid-
dle (IV) (14.10%; 26.81%; 39.11%) and high dose (V) (23.33%; 
25.68%; 29.30%) groups, and the K+ concentration in the middle 
(IV) (17.78%; 20.33%; 24.10%) and high (V) (18.87%; 26.21%; 
28.12%) dose groups were improved at 30, 60 and 90 days, re-
spectively. The Na+ concentration was reduced at 30 (6.70%), 60 
(6.70%), and 90 (6.70%) days in group VI, and the K+ concentra-
tion was increased at 30 (16.43%), 60 (28.82%), and 90 (38.11%) 
days in group VI compared to group II. The major phenolic con-
stituents and potent anti-oxidants of H. Rasa are gallic acid and 
its derivatives, chebulagic acid, tannins such as emblicanin A and 
B, flavonoids such as quercetin, alkaloids and free radical scaven-
gers.50–52 These phytoconstituents protect erythrocytes from free 
radical damage and maintain the Na+/K+ ATPase activity and Na+ 
and K+ concentrations, resulting in membrane fluidity. We studied 
the effects of different doses of H. Rasa at different time intervals 
on Na+/K+ ATPase activity in rats. We found that erythrocytes were 
protected in a dose- and time-dependent manner.

The commercially available anti-hypertensive drug, atorvastatin 
was used as a standard drug candidate to compare with the efficacy 
of H. Rasa in atherosclerosis-induced rabbits. Na+/K+ ATPase ac-
tivity was increased at 30 (44.76%), 60 (47.33%) and 90 (49.90%) 
days of diet when compared to HFD-induced rabbits. Comparing 
the levels of Na+/K+ ATPase (statin-treated group) with different 
doses of H. Rasa, the activity was found to lie between the middle 
and high doses of H. Rasa in the present study. By contrast, the 
concentration of Na+ and K+ were closest to the lowest dose of H. 
Rasa. This may be due to increased endothelial production of nitric 
oxide (NO), which is controlled by statin and is involved in the 
upregulation of endothelial NO synthase activity.53 This effect may 
be potentiated by the simultaneous inhibition of the protein with 
reduced endothelial NO synthase mRNA degradation and, thus, 
increased NO bioavailability.54 In addition, NO acts as a powerful 
free radical scavenger, and statins inhibit the production of reactive 
oxygen species such as superoxide anion and hydroxyl radicals.55 
Group VI of the present study that Na+/K+ ATPase can protect and 
normalize the electrolyte balance in cells of statins when adminis-
tered simultaneously with HFD in rabbits. When we analyzed the 
plasma and tissue concentration of mercury, copper and sulfides 
by ICP-OES after 90 days of treatment, we found that there was no 
detectable limit of the above metals in the plasma or various organs 
such as heart, aorta, spleen, liver, kidney, etc. (Data not shown). To 
support this statement, we also studied the histopathology of major 
organs, which showed that normal or near-normal histological ar-
chitecture was found in the control group and the high-dose of H. 
Rasa-treated group (Fig. 5).

Clinical significance

In atherosclerosis, HFD reduces EM stabilization after being ad-
ministered with H. Rasa, an Ayurvedic polyherbo-metalo-mineral 
drug. This agent protects EM by maintaining Na+/K+ ATPase ac-
tivity through the Na+/K+ pump.

Limitations

Membranes play an important role in the maintenance of cell flu-

idity and integrity. This study investigated the role of H. Rasa on 
membrane stabilization through Na+/K+ ATPases. More research is 
needed to evaluate the potential uses of H. Rasa on the protection 
of erythrocytes.

Future directions

Hyperlipidemia is closely associated with atherosclerosis and in-
creasing evidence suggests that erythrocytes may participate in 
atherogenesis. The increased generation of reactive oxygen species 
occurs in atherosclerosis and may be responsible for the increased 
oxidative injury to the erythrocyte membrane in the atherosclerotic 
condition. Therefore, we studied the effects of H. Rasa, an ayur-
vedic formulation, on erythrocyte membrane stabilization through 
Na+/K+ ATPase activity. Data on the role of H. Rasa, Na+/K+ AT-
Pase and ion transport in EM have yet to be studied. However, the 
aim of the present study was to evaluate the correlation between 
the cholesterol-lowering agent H. Rasa and EM Na+/K+ ATPase 
activity in rabbits with HFD-induced atherosclerosis. This study 
also focused on the dose- and time-dependent activity of H. Rasa. 
The commercially available anti-hypertensive drug, atorvastatin 
was used as a standard drug candidate to compare with the effi-
cacy of H. Rasa in atherosclerosis-induced rabbits. Based on the 
preliminary results of this study, we speculate that H. rasa is a 
potential drug candidate for the treatment of atherosclerosis. In ad-
dition, to ensure its potential efficacy, additional research is needed 
to study the mechanism of action of H. Rasa.

Conclusions

These results suggest that HFD markedly reduces EM stabilization 
in atherosclerosis whereas H. Rasa protects EM by maintaining 
Na+/K+ ATPase activity through the Na+/K+ pump.
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